联系我们
 工作时间
周一至周日 :7:00-22:00
 联系方式
客服热线:021-51863150
马经理:13681746024
邮箱:mayan@momobiotek.com
师经理:13918897495
邮箱:shiyaohui@momobiotek.com
办公地址:上海市浦东新区盛荣路88弄6号205室

KinExA References

Affinity & Kinetic Measurements:

KinExA technology overview:

Wani T.A., et al. 2016. New analytical application of antibody-based biosensor in estimation of thyroid-stimulating hormone in serum. Bioanalysis 10.4155/bio-2015-0034. https://www.ncbi.nlm.nih.gov/pubmed/26978548IF=2.673

Glass T.R., Winzor D.J. 2014. Conformation of the validity of the current characterization of immunochemical reactions by kinetic exclusion assay. Anal Biochem 456: 38-42. http://www.ncbi.nlm.nih.gov/pubmed/24751468 (IF=2.334)

Bee C., et al. 2012. Exploring the dynamic range of the kinetic exclusion assay in characterizing antigen-antibody interactions. PLOS ONE 7(4): e36261. http://www.ncbi.nlm.nih.gov/pubmed/22558410 (IF=2.806)

Darling R.J. and Brault P.A. 2004. Kinetic exclusion assay technology: characterization of molecular interactions. Assay and Drug Dev Tech 2(6): 647-657. http://www.ncbi.nlm.nih.gov/pubmed/15674023 (IF=2.196)

KinExA’s role in drug discovery:

Danial M, et al. 2017.Site-Specific Polymer Attachment to HR2 Peptide Fusion Inhibitors against HIV-1 Decreases Binding Association Rates and Dissociation Rates Rather Than Binding Affinity. Bioconjug Chem. 10.1021/acs.bioconjchem.6b00540. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1021%2Facs.bioconjchem.6b00540 (IF=4.818)

Kariolis MS, et al. 2017. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 10.1172/JCI85610. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1172%2FJCI85610IF=12.784

Fan Y., et al. 2016. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H. The Journal of Infectious Diseases 15;213(10):1606-14. https://www.ncbi.nlm.nih.gov/pubmed/26936913 (IF=6.273)

Köck, K., et al. 2015. Preclinical development of AMG 139, a human antibody specifically targeting IL-23. British Journal of Pharmacology 172:159-172. http://www.ncbi.nlm.nih.gov/pubmed/25205227(IF=5.491)

Tabrizi M.A., et al. 2009. Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today 14(5/6): 298-305. http://www.ncbi.nlm.nih.gov/pubmed/19152840 IF=6.369

Significance of “solution phase” measurements to unmodified molecules:

Tigue NJ, et al. 2017. MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential. Oncoimmunology.10.1080/2162402X.2017.1280645. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1080%2F2162402X.2017.1280645(IF=7.719)

Kusano-Arai 0., et al. 2016. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. Anal Biochem. 10.1016/j.ab.2016.04.004. https://www.ncbi.nlm.nih.gov/pubmed/27095060(IF=2.334)

Blake R.C., Li X., Blake D.A. 2007. Covalent and noncovalent modifications induce allosteric binding behavior in a monoclonal antibody. Biochemistry 46: 1573-1586. http://www.ncbi.nlm.nih.gov/pubmed/17279622(IF=2.938)

Comparison to SPR:

Fleming JK, Wojciak JM. 2017. Measuring Sphingosine-1-Phosphate: Protein Interactions with the Kinetic Exclusion Assay. Methods Mol Biol. 10.1007/7651_2017_5. https://www.ncbi.nlm.nih.gov/pubmed/28349502

Abdiche YN. et al. 2016. Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms. MAbs. 10.1080/19420862.2015.1118596. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1080%2F19420862.2015.1118596(IF=4.881)

Kusano-Arai 0., et al. 2016. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. Anal Biochem. 10.1016/j.ab.2016.04.004. https://www.ncbi.nlm.nih.gov/pubmed/27095060(IF=2.334)

Drake A.W., et al. 2012. Biacore surface matrix effects on the binding kinetics and affinity of an antigen/antibody complex. Anal Biochem. 429(1):58-69. http://www.ncbi.nlm.nih.gov/pubmed/22766435(IF=2.334)

Sensitivity to measure tight binders:

Abdiche YN. et al. 2016. Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms. MAbs. 10.1080/19420862.2015.1118596. https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1080%2F19420862.2015.1118596(IF=4.881)

Owyang A.M., et al. 2011. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1B-mediated diseases. mAbs 3(1): 49-60. http://www.ncbi.nlm.nih.gov/pubmed/21048425(IF=4.881)


Champagne K., Shishido A., Root M.J. 2009. Interaction of HIV-1 inhibitory peptide T20 with gp41 N-HR coiled coil. J Biol Chem 284: 3619-3627. http://www.ncbi.nlm.nih.gov/pubmed/19073602(IF=4.125)

Kostenuik P.J., et al. 2009. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL J Bone Miner Res 24: 182-195. http://www.ncbi.nlm.nih.gov/pubmed/19016581(IF=6.284)

Luginbuhl B., et al. 2006. Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J Mol Biol 363: 75-97. http://www.ncbi.nlm.nih.gov/pubmed/16962610(IF=4.632)

Rathanaswami P., et al. 2005. Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Biochem Biophys Res Comm 334: 1004-1013. http://www.ncbi.nlm.nih.gov/pubmed/16038881(IF=2.466)

Reverse assay techniques:

Razai A., et al. 2005. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351: 158-169. http://www.ncbi.nlm.nih.gov/pubmed/16002090(IF=4.632)

Whole cell binding techniques:

Bedinger, D., et al. 2015. Differential pathway coupling of activated insulin receptor drives signaling selectivity by XmetA, an allosteric partial agonist antibody. J Pharmacol Exp Ther 353(1):35-43. http://www.ncbi.nlm.nih.gov/pubmed/25613982IF=3.867

Rathanaswami P., Babcook J., Gallo M. 2008. High-affinity binding measurements of antibodies to cell-surface-expressed antigens. Anal Biochem 373: 52-60. http://www.ncbi.nlm.nih.gov/pubmed/17910940(IF=2.334)

Xie L., et al. 2005. Measurement of the functional affinity constant of a monoclonal antibody for cell surface receptors using kinetic exclusion fluorescence immunoassay. J Immunol Methods 304: 1-14. http://www.ncbi.nlm.nih.gov/pubmed/16098983(IF=2.100)

Unpurified antigens:

Wani T.A., et al. 2016. Analytical Application of Flow Immunosensor in Detection of Thyroxine and Triiodothyronine in Serum. Assay Drug Dev Technol.14(9):535-542. https://www.ncbi.nlm.nih.gov/pubmed/27801595 IF=2.196

Bee C., et al. 2013. Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum. PLOS ONE 8(11): e80501. http://www.ncbi.nlm.nih.gov/pubmed/24223227(IF=2.806)

Fujino, Y., et al. 2012. Robust in vitro affinity maturation strategy based on interface-focuses high-throughput mutational scanning. Biochem Biophys Res Commun 4283:395-400. http://www.ncbi.nlm.nih.gov/pubmed/23103372(IF=2.466)

Rathanaswami P., et al. 2011. Kinetic analysis of unpurified native antigens available in very low quantities and concentrations. Anal Biochem 414: 7-13. http://www.ncbi.nlm.nih.gov/pubmed/21371417(IF=2.334)

Other interesting studies:

Li X., Kaattari S.L., Vogelbein M.A., Vadas G.G., Unger M.A., 2016. A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sens Biosensing Res. 7:115-120. https://www.ncbi.nlm.nih.gov/pubmed/26925369

Lou J., et al. 2010. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23(4): 311-319. http://www.ncbi.nlm.nih.gov/pubmed/20156888IF=2.043

Kahle K.M., Steger H.K., Root M.J. 2009. Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLOS Path 5(11): 1-11. http://www.ncbi.nlm.nih.gov/pubmed/19956769(IF=6.608)

Nowakowski A., et al. 2002. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci 99: 11346-11350. http://www.ncbi.nlm.nih.gov/pubmed/12177434IF=9.661


Immunoassay Techniques:

Darwish I.A., et al. 2013. Kinetic-exclusion analysis-based immunosensors versus enzyme-linked immunosorbent assays for measurement of cancer markers in biological specimens. Talanta 111: 13-19. http://www.ncbi.nlm.nih.gov/pubmed/23622520(IF=4.162)

Prieto-Simon B., Miyachi H., Karube I., Saiki H. 2010. High-sensitive flow-based kinetic exclusion assay for okadaic acid assessment in shellfish samples. Biosens Bioelectron 25: 1395-1401. http://www.ncbi.nlm.nih.gov/pubmed/19939663(IF=7.780)

Sasaki K., Oguma S., Namiki Y., Ohmura N. 2009. Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration. Anal Chem 81: 4005-4009. http://www.ncbi.nlm.nih.gov/pubmed/19438265IF=6.320

Glass T.R., Ohmura N., Saiki H. 2007. Least detectable concentration and dynamic range of three immunoassay systems using the same antibody. Anal Chem 79: 1954-1960. http://www.ncbi.nlm.nih.gov/pubmed/17256970IF=6.320

Bromage E.S., et al. 2007. The development of a real-time biosensor for the detection of trace levels of trinitrotoluene (TNT) in aquatic environments. Biosens Bioelectron 22: 2532-2538. http://www.ncbi.nlm.nih.gov/pubmed/17088054(IF=7.780)

Sasaki K., Glass T.R., Ohmura N. 2005. Validation of accuracy of enzyme-linked immunosorbent assay in hybridoma screening and proposal of an improved screening method. Anal Chem 77: 1933-1939. http://www.ncbi.nlm.nih.gov/pubmed/15801721IF=6.320

Glass T.R., et al. 2004. Use of excess solid-phase capacity in immunoassays: advantages for semicontinuous, near-real-time measurements and for analysis of matrix effects. Anal Chem 76: 767-772. http://www.ncbi.nlm.nih.gov/pubmed/14750874IF=6.320

Ohmura N., Lackie S., Saiki H. 2001. An immunoassay for small analytes with theoretical detection limits. Anal Chem 73: 3392-3399. http://www.ncbi.nlm.nih.gov/pubmed/11476240IF=6.320